Parallel Primal-dual Interior-point Methods for Semidefinite Programs B-415 Parallel Primal-dual Interior-point Methods for Semidefinite Programs
نویسندگان
چکیده
The Semidefinite Program (SDP) is a fundamental problem in mathematical programming. It covers a wide range of applications, such as combinatorial optimization, control theory, polynomial optimization, and quantum chemistry. Solving extremely large-scale SDPs which could not be solved before is a significant work to open up a new vista of future applications of SDPs. Our two software packages SDPARA and SDPARA-C based on strong parallel computation and efficient algorithms have a high potential to solve large-scale SDPs and to accomplish the work. The SDPARA (SemiDefinite Programming Algorithm paRAllel version) is designed for general large SDPs, while the SDPARA-C (SDPARA with the positive definite matrix Completion) is appropriate for sparse large-scale SDPs arising from combinatorial optimization. The first sections of this paper serves as a user guide of the packages, and then some details on the primal-dual interior-point method and the positive definite matrix completion clarify their sophisticated techniques to enhance the benefits of parallel computation. Numerical results are also provided to show their high performance.
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملExploiting sparsity in primal-dual interior-point methods for semidefinite programming
The Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro and the Nesterov-Todd search directions have been used in many primal-dual interior-point methods for semidefinite programs. This paper proposes an efficient method for computing the two directions when a semidefinite program to be solved is large scale and sparse.
متن کاملA parallel primal-dual interior-point method for semidefinite programs using positive definite matrix completion
A parallel computational method SDPARA-C is presented for SDPs (semidefinite programs). It combines two methods SDPARA and SDPA-C proposed by the authors who developed a software package SDPA. SDPARA is a parallel implementation of SDPA and it features parallel computation of the elements of the Schur complement equation system and a parallel Cholesky factorization of its coefficient matrix. SD...
متن کامل